#### Rehabilitation of Ankle Injuries in Elite Sport



#### Oliver Finlay – Consultant Sports Physiotherapy & Sports Performance Consultant

#### Rehabilitation Objectives

**Restoration of:** 

Joint alignment, stability, mobility & function

Fascial integrity

Sensorimotor functional integration MT strength/power/work capacity Sports specific function & capabilities

#### Triceps Surae Single leg calf raises i) Straight leg ii) Bent leg

#### Hip Extension Strength Hand held dynamometer

Fox et al (2008); Finni et al (2003);

**Hip Adductor Strength** 

Add Longus: Aids hip flexion; stabiliser in w/b single leg stance & decelerates hip into extension

Add Brevis: assists hip abductors to stabilise pelvis during stance phase

Hip Abductor Strength

Assess strength with hand held dynamometer in short & long lever positions

Establish the ratio between abd/add strength

Drewes et al (2009); Ferber et al (2011)

Lower Abdominal Strength Double leg lowers

Oblique Strength Side plank holds to fatigue

Moore & Brandon, 2011

#### **Triple Hop Test**

## Measuring distance as an indicator of strength & power

Hamilton et al (2008); Reid et al (2007)

#### **6m Timed Hop**

## Measuring time as an indicator of strength & power

Hamilton et al (2008); Reid et al (2007)





#### One Legged Hop for Distance Measuring distance as an indicator of strength & power

Hamilton et al (2008); Reid et al (2007)

#### Star Excursion Balance Test Measuring distance of excursion as an indicator of balance & functional stability

Olmsted et al (2002); Kinzey & Armstrong (1998); Sabin (2011)

#### Star Excursion Test



Olmsted et al (2002); Kinzey & Armstrong (1998); Sabin (2011)



Neuromuscular Function & Motor Control

Neural/myofascial mobilisation & muscle protein synthesis – acupuncture, Thai massage

Burd et al (2010)

#### Re-education of joint position sense

(mechanoreceptor afferent response to end range ligament tension – efferent response to slow or reverse direction of joint movement – PNF)

Silvers & Mandelbaum (2007)

#### Proximal–Distal proprio challenges & drills

Zazulak et al (2007)

Re-education of normal movement



Role in proprioception, functional chain stabilisation/movement, force transfer, arthrogenic function & tissue nutrition

Stecco et al (2009)

#### MFR thru full body chains:

- passive with associated movement
- active with specific exercise patterns

Myers (2009)

#### Fascial Integrity

#### Scar tissue mobilisation/manipulation

Tissue loading (mechanical strain – cell proliferation, orientation, matrix synthesis & maturation)

Khan (2009); Drew et al (2012)

# Myofascial release (pain mediated by neurofibres at a superficial level)

Stecco & Day (2010); Langevin (2008)

#### Fascial Integrity





#### Thai Massage



#### Fascial Integrity

#### **Spiral Line – below ASIS**

TFL Anterior ITB Tibial Condyle Tib Ant Medial Arch Tib Ant/Peroneus L Peroneus L Biceps Fem



Myers (2009)

#### Joint Alignment & ROM

Joint manips, mobs & stabilisation Identify where the joint is with altered afferent input using the manual muscle testing technique – then treat

Sandstrom (2012)

Passive, AA, active & resisted ROM exercises



If the more conventional approaches to overcoming neural inhibition fail, consider the unconventional

TMJ alignment

Piercings

#### Proximal-Distal Proprioceptive Challenges

#### Condition the proximal segment immediately

Planks Side Planks Bridges Etc. etc. etc. 5 minute circuits

#### Proximal-Distal Proprioceptive Challenges



www.HumanPerformanceGlobal.com

#### Motor Control

| Physiological Goal | Correct inhibited muscle or dysfunctional movement pattern |  |
|--------------------|------------------------------------------------------------|--|
| Intensity          | Low <30% RM or MVC – Low to moderate load to perform well  |  |
| Volume (Rest)      | ➢ 3 − 5 sets x 20 reps (< 60 seconds)                      |  |
|                    | 3 – 5 sets x 30 – 60 seconds if isometrics                 |  |
| Frequency          | 3 – 7 x per week (2 x daily if practical)                  |  |
| Fatigue            | Not necessary BUT should get an active muscle sensation    |  |
| Gains              | Improvement in movement only                               |  |
| Neural Adaptation  | Acute potentiation of Type I                               |  |
|                    | Coordination of joint increases                            |  |
|                    | Reflexive low force change                                 |  |
|                    | Reversal of pain inhibition                                |  |
|                    | <ul> <li>Atrophy (if enough volume)</li> </ul>             |  |
| Muscle Adaptation  | Low force level control                                    |  |
|                    | Slow twitch stiffness                                      |  |
|                    | Slow twitch hypertrophy if high volume                     |  |
|                    | Increased length if through full AROM                      |  |
| Typical Exercise   | > Pilates                                                  |  |
|                    | ➢ Drills                                                   |  |
|                    | Movement pattern exercises                                 |  |



#### **Green Theraband Daily (Motor Control)**

#### Circuit 1 - 20 reps slow & controlled *Alternated with* Circuit 2 - 20 reps fast

C 1 - C 2 - C 1 - C 2 - C 1 (2 min recovery)



#### Set A - theraband around foot

Diagonal down & out to up & in, with theraband applying resistance away from body
 Diagonal down & out to up & in, with theraband applying resistance towards body

3) Diagonal down & in to up & out, with theraband applying resistance away from body4) Diagonal down & in to up & out, with theraband applying resistance towards body

5) Straight up & down, with the raband applying resistance away from body 6) Straight up & down, with the raband applying resistance towards body

#### Set B - theraband around big toe

Straight up & down, with theraband applying resistance away from body
 Straight up & down, with theraband applying resistance towards body

#### Set C - theraband around other toes

Straight up & down, with theraband applying resistance away from body
 Straight up & down, with theraband applying resistance towards body

#### Set D - track based footwork drills

A Skips – B Skips – Lateral Side Shuffle A – Lateral Side Shuffle B – Lateral Side Shuffle C – Backward Walks – Straight Knee Scissors – Bent Knee Scissors – Over Ankle Dribbles – Over Calf Dribbles – Over Knee Dribbles

#### Track-Based Footwork Drills



www.HumanPerformanceGlobal.com

#### Track-Based Footwork Drills





#### Strength, Power & Endurance

# Address neural/arthrogenic muscle inhibition & resultant muscle atrophy

Assess where the functional chain is breaking down – address first in isolation, then progress to multi-joint, functional movements recruiting through kinetic chain



#### Muscle Atrophy - hypertrophy & DOMS

Capillarisation - warm up

Potentiation - power/plyometric task warm up

Recovery Plus - incorporates endorphinic decontracture & capillarisation components





www.HumanPerformanceGlobal.com

#### Maximal Strength

| Physiological Goal | Performance enhancement – general physical capacity                                                                                                                                                                        |  |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Intensity          | >80% RM or MVC – explosive intention – trying to accelerate the load applied                                                                                                                                               |  |
| Volume (Rest)      | <ul> <li>3 - 6 sets x 5 reps</li> <li>3 - 5 sets x 5 reps x 5 second holds if isometric (2 - 3 minutes rest)</li> </ul>                                                                                                    |  |
| Frequency          | 1 – 3 x per week                                                                                                                                                                                                           |  |
| Fatigue            |                                                                                                                                                                                                                            |  |
| Gains              | Strength                                                                                                                                                                                                                   |  |
| Neural Adaptation  | <ul> <li>Increased muscle unit activation</li> <li>Reduced spinal inhibition mechanisms</li> </ul>                                                                                                                         |  |
| Muscle Adaptation  | <ul> <li>Fast twitch hypertrophy IIx – IIa in a few weeks</li> <li>Reversal of detraining</li> <li>Tendon hypertrophy of 5% at each end</li> <li>Increase in passive stiffness &amp; stress strain capabilities</li> </ul> |  |
| Typical Exercise   | <ul> <li>Barbell squat &gt; body weight on bar</li> <li>Step up 0.5 x body weight</li> <li>Leg press &gt; 2 x body weight DL &amp; 1 – 1.5 x SL</li> </ul>                                                                 |  |

### Maximal Strength - Triceps Surae

|  | Exam | $\left[ \bigcirc \right]$ |  |
|--|------|---------------------------|--|
|--|------|---------------------------|--|

| Exercise                                | Reps & sets | %age 1RM       |
|-----------------------------------------|-------------|----------------|
| Stiff legged walks with overhead weight | 10 x 3-5    | N/A            |
| Straight leg, leg press calf raises     | 5 x 3-5     | 60-70-80-80-80 |
|                                         |             |                |
| Med Ball Squeeze Bridges                | 10 x 3-5    | N/A            |
| Seated calf raises                      | 8 x 3-5     | 60-70-80-80-80 |
| Heel raise back squats                  | 5 x 3-5     | 60-70-80-80-80 |
|                                         |             |                |
| 4 Way Standing Theraband Hip Work       | 10 x 3-5    | N/A            |
| Barbell loaded heel lowers off step     | 5 x 3-5     | 60-70-80-80-80 |
| High Pulls                              | 5 x 3-5     | 60-70-80-80-80 |
|                                         |             |                |
| Side lying adductor cycles              | 10 x 3-5    | N/A            |
| Bent leg, leg press heel lowers         | 5 x 3-5     | 60-70-80-80-80 |
| Step up & drive on box                  | 5 x 3-5     | 60-70-80-80-80 |

www.HumanPerformanceGlobal.com

#### The Load Factor

## Without load, tendons lose function, with degradation occurring in the matrix & cells

Overload leads to tendinopathy

Therefore the aspects of load are critical

Cook & Purdam (2009); Cook (2011)



# If the tendon is healthy & the load is appropriate, the tendon will be strengthened

If there has been significant unloading, followed by an episode of heavy loading, then the response will be significant (no stimulus for protein production/structure)

#### The Load Factor



#### The Load Factor

Get strong Static slow tendon loads early Progress speed of loading Progress volume of functional activities Introduce elastic load

Arampatzis et al (2007)



Any activity requiring a tendon to store & release energy (stretch-shorten cycle) can be considered a high tensile load for a tendon

Anything else (high weight, eccentric activity) is easy

Long thin springs are vulnerable to overload in the middle – Achilles

Short thick springs are vulnerable to overload at the insertions – Patella

Allison & Purdam (2009)



| Physiological Goal | Performance enhancement – conversion of specific strength            |  |  |
|--------------------|----------------------------------------------------------------------|--|--|
| Intensity          | Maximal power or acceleration for target load or movement            |  |  |
| Volume (Rest)      | 3 – 6 sets x 2 – 3 reps for weights                                  |  |  |
|                    | 3 – 6 sets x 5 – 10 reps for jumps or throws                         |  |  |
| Frequency          |                                                                      |  |  |
| Fatigue            | No fatigue                                                           |  |  |
| Gains              | Power                                                                |  |  |
| Neural Adaptation  | Increased muscle unit activation & intermuscular coordination        |  |  |
|                    | Reduced inhibition on ground contact                                 |  |  |
| Muscle Adaptation  | Fast twitch hypertrophy                                              |  |  |
|                    | Some tendon hypertrophy & increased passive stiffness if high volume |  |  |
|                    | Power work may maintain tendon adaptation                            |  |  |
| Typical Exercise   | Multi-joint explosive lifts                                          |  |  |
|                    | > Jumps                                                              |  |  |
|                    | Plyometrics                                                          |  |  |
|                    | > Throws                                                             |  |  |





# www.HumanPerformanceGlobal.com

#### Power - Posterior Chain Example

| Exercise                          | Reps & sets   | %age 1RM         |
|-----------------------------------|---------------|------------------|
| Plank                             | 60 secs x 3-5 | N/A              |
| High Pulls                        | 3 x 3-5       | 70-80-90-100-100 |
| Small box step offs to jumps      | 15 x 3-5      | N/A              |
|                                   |               |                  |
| 4 Way Standing Theraband Hip Work | 10 x 3-5      | N/A              |
| Hang Cleans                       | 3 x 3-5       | 70-80-90-100-100 |
| Box Jumps                         | 3 x 3-5       | N/A              |
|                                   |               |                  |
| Backward Theraband Crucifix Walks | 60 secs x 3-5 | N/A              |
| Split Jerk                        | 3 x 3-5       | 70-80-90-100-100 |
| Med Ball Throws (High)            | 3 x 3-5       | N/A              |
|                                   |               |                  |
| Barbell Roll-Outs                 | 10 x 3-5      | N/A              |
| Snatch                            | 3 x 3-5       | 70-80-90-100-100 |
| Med Ball Throws (Long)            | 3 x 3-5       | N/A              |

#### Plyometrics - Load Management

# Load needs to be increased gradually & heavy tendon loading days every 3 days initially



Plyometric progressions are quality triggered, not time dependant. Exercises should be led with an active arm drive & landings should be quiet

Single exercises: recovery in between repetitions should be sufficient to enable an optimal quality of execution

| Stage | Vertical Plyometric Exercise Double Leg | Sets/Reps | Horizontal Plyometric Exercise | Sets/Reps |
|-------|-----------------------------------------|-----------|--------------------------------|-----------|
| 1     | Box Jumps – Singles                     | 5 x 10    |                                |           |
| 2     | Box Jumps – Continuous                  | 5 x 10    |                                |           |
| 3     | Place Jumps – Singles                   | 5 x 10    |                                |           |
| 4     | Place Jumps – Continuous                | 5 x 10    |                                |           |
| 5     | Tuck Jumps – Singles                    | 5 x 10    |                                |           |
| 6     | Tuck Jumps – Continuous                 | 5 x 10    |                                |           |
| 7     | Split Lunge Jumps – Singles             | 5 x 10    |                                |           |
| 8     | Split Lunge Jumps – Continuous          | 5 x 10    |                                |           |



Single Leg Progressions

| Stage | Vertical Plyometric Exercise Single Leg | Sets/Reps | Horizontal Plyometric Exercise | Sets/Reps |
|-------|-----------------------------------------|-----------|--------------------------------|-----------|
| 1     | Forward Hop Box Jumps – Singles         | 5 x 10    |                                |           |
| 2     | Forward Hop Box Jumps – Continuous      | 5 x 10    |                                |           |
| 3     | Lateral Hop Box Jumps – Singles         | 2 x 10    | Skips                          | 2 x 30m   |
| 4     | Lateral Hop Box Jumps – Continuous      | 2 x 10    | Skips for Distance             | 4 x 30m   |
| 5     | Backward Hop Box Jumps – Singles        | 2 x 10    | Skips for Height               | 1 x 30m   |
| 6     | Backward Hop Box Jumps – Continuous     | 2 x 10    | Indian Skips                   | 2 x 30m   |
| 7     | Forward Small Hurdle Hops – Continuous  | 2 x 10    | Bounds                         | 3 x 30m   |
| 8     | Backward Small Hurdle Hops – Continuous | 5 x 10    |                                |           |

#### Work Capacity

| Physiological Goal | Strength endurance                                               |  |
|--------------------|------------------------------------------------------------------|--|
|                    | Hypertrophy                                                      |  |
|                    | General strength – promotes muscle balance                       |  |
| Intensity          | 60 – 80% RM of MVC                                               |  |
| Volume (Rest)      | 3 – 5 sets x 5 – 12 reps for weights                             |  |
|                    | ➤ 3-5 sets x 30 - 60 seconds for isometrics (1 - 2 minutes rest) |  |
| Frequency          | 2 – 3 x per week                                                 |  |
| Fatigue            | Necessary                                                        |  |
| Gains              | Strength endurance                                               |  |
|                    | Hypertrophy                                                      |  |
|                    | General strength – promotes muscle balance                       |  |
| Neural Adaptation  | None                                                             |  |
| Muscle Adaptation  | Whole muscle hypertrophy                                         |  |
|                    | 5% increase in tendon hypertrophy at each end                    |  |
| Typical Exercise   | Any exercise that you can load                                   |  |
|                    | Stabilise adjacent joints                                        |  |
|                    | Work muscle through length                                       |  |
|                    | <ul> <li>e.g. Nordic Curl</li> </ul>                             |  |

www.HumanPerformanceGlobal.com

#### Work Capacity - Intrinsics Example

| Exercise                          | Reps & sets   | %age 1RM |
|-----------------------------------|---------------|----------|
| Standing on tip toes              | 60 secs x 3-5 | N/A      |
| Standing on pointe                | 60 secs x 3-5 | N/A      |
| Toe towel curls                   | 60 secs x 3-5 | N/A      |
| Arch raises with<br>extended toes | 60 secs x 3-5 | N/A      |

www.HumanPerformanceGlobal.com

#### Work Capacity Progressions



#### Work Capacity Progressions











Work with coaches to ensure end stage rehab & RTT is a seamless transition

Ensure that coach & athlete are educated as to how to incorporate specific warm-up, maintenance & sufficient recovery components into training programme to ensure that risk of recurrence is reduced

# Sport Specific Function & Capability









- Anderson et al. Ankle Instability. *Foot Ankle Spec.* 2011, vol 4: no 1; pp 46-53
- Drewes et al. Altered ankle kinematics & shank-rear-foot coupling in those with chronic ankle instability. *J Sport Rehabil.* 2009, vol 18(3); pp375-388
- Eren et al. The role of a posteriorly positioned fibula in ankle sprain. Am J Sports Med. 2003, vol 31: pp 995-998
- Finni et al. Mapping of movement in the isometrically contracting human soleus muscle reveal details of its structural & functional complexity. *J Appl Physiol.* 2003, vol 95: pp 2128-2133
- Fox et al. Eccentric plantar-flexor torque deficits in participants with functional ankle instability. *J of Athl Training.* 2008, vol 43: pp 51-54
- Hertel. Functional Instability Following Lateral Ankle Sprain. Sports Med. 2000, vol 29: pp 361-371
- Higham & Biewener. Integration within & between muscles during terrestrial locomotion: effects of incline & speed. *J of Exp Biol.* 2008, vol 211: pp 2303-2316
- Kaminski & Hartsell. Factors contributing to chronic ankle instability: a strength perspective. *J of Athl Training.* 2002, vol 37: pp 394-405
- Kaminski et al. Eversion strength analysis of uninjured & functionally unstable ankles. J of Athl Training. 1999, vol 34: pp 239-245
- Maas & Sandercock. Force transmission between synergistic skeletal muscles through connective tissue linkages. J of Biomed & Biotech. 2010, doi:10.1155/2010/575672
- Palmieri-Smith et al. Peroneal activation deficits in persons with functional ankle instability. Am J Sports Med. 2009, vol 37: pp 982-988
- Scranton et al. The relationship between chronic ankle instability & variations in mortise anatomy & impingement spurs. Foot Ankle Int. 2000, vol 21: pp 657-664
- Stecco, C. & Day, J.A. The fascial manipulation technique & its biomechanical model: A guide to the human fascial system. *Int J Ther Massage Bodywork.* 2010, vol 3(1): pp38-40
- Willems et al. Proprioception & muscle strength in subjects with a history of ankle sprains & chronic instability. J of Athl Training. 2002, vol 37: pp 487-493

#### Thank You!!!

#### Oliver@OliverFinlay.com www.OliverFinlay.com



